

D5.6 – Simulation total BTE efficiency improvement and tail-pipe emissions

Innovation Action

EUROPEAN COMMISSION

Grant Agreement No. 874972

HORIZON 2020 PROGRAMME

Topic LC-GV-04-2019

Low-emission propulsion for long-distance trucks and coaches

Deliverable No.	LONGRUN D5.6	
Related WP	5	
Deliverable Title	Simulation total BTE efficiency improvement	
	and tail-pipe emissions	
Deliverable Date	2023-05-31	
Deliverable Type	REPORT	
Dissemination level	Confidential – member only (CO)	
Written By	Vikram Betgeri (RWTH), Theodore Kossioris (RWTH)	2022-05-15
Checked by	Dr. Marco Günther (RWTH), Dr. Sandra Glück (FEV), Dr. Sascha Schoenfeld (FEV), Bram Hakstege (WP Leader - DAF),	2022-05-25
Reviewed by (if applicable)	Prof. Noshin Omar	2023-06-26
Approved by	Dr. Lukas Virnich	2023-08-23
Status	FINAL REPORT	2023-08-23

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 874972.

Publishable summary

In order to achieve carbon-neutral transportation and meet stringent emissions standards, future powertrain options must be carefully considered. One possible option for commercial vehicles is electrification, but this would require a highly developed infrastructure, including a stable power grid and an adequate number of fast-charging stations. However, areas with limited infrastructure or a shortage of green energy sources may need to explore alternative solutions. Moreover, the internal combustion engine (ICE) will remain the preferred method of propulsion since there is no complete substitute that can cover its entire range of uses, especially in heavy- duty long haulage and non-road applications. To meet the challenges of sustainable climate goals, heavy duty combustion engine thermal efficiency improvement methods have been actively investigated. Several measures like increased compression ratio, increased peak firing pressure, thermally insulated combustion chamber, optimized air path technology etc., have been investigated discretely. A combination of single cylinder engine experiments and 1D engine models have been used to understand these effects. Finally, the influence of the consolidation of various technologies on the brake thermal efficiency of the given heavy duty engine is reported.

11 Acknowledgement

The author(s) would like to thank the partners in the project for their valuable comments on previous drafts and for performing the review.

Project partners:

#	Partner	Partner Full Name
1	FEV	FEV EUROPE GMBH
2	DAF	DAF TRUCKS NV
3	FPT	FPT INDUSTRIAL SPA
4	FORD	FORD OTOMOTIV SANAYI ANONIM SIRKETI
5	IRIZAR	IRIZAR S COOP
6	IVECO	IVECO S.p.A.
7	VOLVO	VOLVO TECHNOLOGY AB
8	VDL	VDL ENABLING TRANSPORT SOLUTIONS BV
9	ABEE	AVESTA BATTERY & ENERGY ENGINEERING
10	AVL	AVL LIST GMBH
11	EATON	EATON ELEKTROTECHNIKA SRO
12	GARR	GARRETT MOTION CZECH REPUBLIC SRO
13	IDIADA	IDIADA AUTOMOTIVE TECHNOLOGY SA
14	IFP	IFP Energies Nouvelles
15	AVL	AVL MTC MOTORTESTCENTER AB
16	NESTE	NESTE OYJ
17	PRIMA	PRIMAFRIO SL
18	SHELL	SHELL GLOBAL SOLUTIONS (DEUTSCHLAND) GMBH
19	SIE	SIEMENS INDUSTRY SOFTWARE SAS
20	TECHNA	FUNDACION TECHNALIA RESEARCH & INNOVATION
21	TOTAL	TOTAL MARKETING SERVICES
22	UMIC	UMICORE AG & CO KG
23	UNR	UNIRESEARCH BH
24	JRC	JRC -JOINT RESEARCH CENTRE – EUROPEAN COMMISSION
25	CHALM	CHALMERS TEKNISKA HOEGSKOLA AB
26	RWTH	RHEINISCH-WESTFAELISCHE TECHNISCHE HOCHSCHULE AACHEN
27	TU/e	TECHNISCHE UNIVERSITEI EINDHOVEN
28	TUG	TECHNISCHE UNIVERSITAET GRAZ
29	UNIAQ	UNIVERSITA DEGLI STUDI DELL'AQUILA
30	VUB	VRIJE UNIVERSITEIT BRUSSEL

11.1 Disclaimer

Copyright ©, all rights reserved. This document or any part thereof may not be made public or disclosed, copied or otherwise reproduced or used in any form or by any means, without prior permission in writing from the LONGRUN Consortium. Neither the LONGRUN Consortium nor any of its members, their officers, employees or agents shall be liable or responsible, in negligence or otherwise, for any loss, damage or expense whatever sustained by any person as a result of the use, in any manner or form, of any knowledge, information or data contained in this document, or due to any inaccuracy, omission or error therein contained.

All Intellectual Property Rights, know-how and information provided by and/or arising from this document, such as designs, documentation, as well as preparatory material in that regard, is and shall remain the exclusive property of the LONGRUN Consortium and any of its members or its licensors. Nothing contained in this document shall give, or shall be construed as giving, any right, title, ownership, interest, license or any other right in or to any IP, know-how and information.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 874972. The information and views set out in this publication does not necessarily reflect the official opinion of the European Commission. Neither the European Union institutions and bodies nor any person acting on their behalf, may be held responsible for the use which may be made of the information contained therein.

