

D2.1 – Fuel Matrix for future HD engines

Innovation Action

EUROPEAN COMMISSION

Grant Agreement No. 874972

HORIZON 2020 PROGRAMIME Topic LC-GV-04-2019 Low-emissions propulsion for long-distance trucks and coaches

Deliverable No.	LONGRUN D2.1	
Related WP	2	
Deliverable Title	Fuel Matrix for future HD engines	
Deliverable Date	2020-08-31	
Deliverable Type	REPORT	
Dissemination level	Confidential – member only (CO)	
Written By	Glück Sandra, Ahmad Omari (FEV)	2020-07-15
Checked by	Lukas Virnich (FEV)	2020-08-15
Reviewed by (if applicable)	-	-
Approved by	Markus Schönen	2020-08-19
Status	Final	2020-08-19

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 874972.

Publishable summary

The first deliverable of the Longrun project is a report on the most promising fuels for future HD applications. One of the project objectives is to develop a robust ICE engine technology for future fuels while achieving a major well-to-wheel CO_2 reduction. This objective shall be reached by provision of pathways how highly efficient renewable fuels (from production and combustion side) can be used in existing fleets using also retrofit solutions.

The project partners (OEMs, engineering partners and fuel suppliers) discussed about possible sustainable fuels and combustion systems which are promising with regards to high thermal efficiency, low engine out emissions and suitability for current and modified fuel infrastructures.

The selected fuels are hydrogen, methanol and paraffinic diesel such as HVO (Hydrogenated Vegetable Oils) or synthetic diesel produced by the Fischer Tropsch synthesis. Herein, the paraffinic diesel used is "Neste My Renewable Diesel ™"

Paraffinic diesel has been chosen because it is one of the few renewable fuels compatible with current vehicle fleet and fuel infrastructure, thereby allowing an immediate impact on W2W-CO₂ emissions. In addition, paraffinic Diesel shows a lower sooting tendency compared to fossil Diesel, thereby allowing to optimize the engine hardware and software for improved thermal efficiency, e.g. by increased compression ratio without sacrificing engine-out soot level.

Hydrogen was selected being the only fuel allowing immediate reduction of Tank-to-Wheel (T2W) CO_2 emissions, which is particularly important for OEMs bearing in mind the current CO_2 -Legislation on T2W-basis. Furthermore, H_2 also allows a W2W CO_2 -neutrality with lowest energy loss in the conversion process, both on the power-to-fuel side and the fuel-to-power side. The clear shortcoming of H_2 is the fuel infrastructure and fuel handling. However, being a central element in the renewable energy ecosystem and therefore strongly supported by a large number of European governments, the infrastructure for H_2 is assumed to improve significantly in the future.

Methanol was selected being the fuel with the best compromise in the tradeoff between fuel production and transportability. In contrast to typical spark-ignited methanol combustion, a new combustion concept was selected where methanol is burned diffusively in a compression ignition (CI) engine. To enable CI of methanol, a diesel pilot is used to preheat the combustion chamber. The resulting process allows to operate on a high compression ratio thereby achieving high thermal efficiency.

It's worth mentioning here that ethers are potential fuels for CI-engines as well but were not selected here due to different reasons. In a nutshell, DME is considered in a parallel work package and results will be transferred. OME is considered as highly potential but was not selected due to the limited availability of high-quality OME allowing extensive testing and due to the several compatibility shortcomings with standard diesel injection systems. A detailed investigation of ethers as a fuel for CI engines is suggested for future projects.

5 Acknowledgement

The author(s) would like to thank the partners in the project for their valuable comments on previous drafts and for performing the review.

Project partners:		
#	Partner	Partner Full Name
1	FEV	FEV EUROPE GMBH
2	DAF	DAF TRUCKS NV
3	FPT	FPT INDUSTRIAL SPA
4	FORD	FORD OTOMOTIV SANAYI ANONIM SIRKETI
5	IRIZAR	IRIZAR S COOP
6	IVECO	IVECO S.p.A.
7	VOLVO	VOLVO TECHNOLOGY AB
8	VDL	VDL ENABLING TRANSPORT SOLUTIONS BV
9	ABEE	AVESTA BATTERY & ENERGY ENGINEERING
10	AVL	AVL LIST GMBH
11	EATON	EATON ELEKTROTECHNIKA SRO
12	GARR	GARRETT MOTION CZECH REPUBLIC SRO
13	IDIADA	IDIADA AUTOMOTIVE TECHNOLOGY SA
14	IFP	IFP Energies Nouvelles
15	AVL	AVL MTC MOTORTESTCENTER AB
16	NESTE	NESTE
17	PRIMA	PRIMAFRIO SL
18	SHELL	SHELL GLOBAL SOLUTIONS (DEUTSCHLAND) GMBH
19	SIE	SIEMENS INDUSTRY SOFTWARE SAS
20	TECHNA	FUNDACION TECHNALIA RESEARCH & INNOVATION
21	TOTAL	TOTAL MARKETING SERVICES
22	UMIC	UMICORE AG & CO KG
23	UNR	UNIRESEARCH BH
24	JRC	JRC -JOINT RESEARCH CENTRE – EUROPEAN COMMISSION
25	CHALM	CHALMERS TEKNISKA HOEGSKOLA AB
26	RWTH	RHEINISCH-WESTFAELISCHE TECHNISCHE HOCHSCHULE AACHEN
27	TU/e	TECHNISCHE UNIVERSITEI EINDHOVEN
28	TUG	TECHNISCHE UNIVERSITAET GRAZ
29	UNIAQ	UNIVERSITA DEGLI STUDI DELL'AQUILA
30	VUB	VRIJE UNIVERSITEIT BRUSSEL

5.1 Disclaimer

Copyright ©, all rights reserved. This document or any part thereof may not be made public or disclosed, copied or otherwise reproduced or used in any form or by any means, without prior permission in writing from the LONGRUN Consortium. Neither the LONGRUN Consortium nor any of its members, their officers, employees or agents shall be liable or responsible, in negligence or otherwise, for any loss, damage or expense whatever sustained by any person as a result of the use, in any manner or form, of any knowledge, information or data contained in this document, or due to any inaccuracy, omission or error therein contained.

All Intellectual Property Rights, know-how and information provided by and/or arising from this document, such as designs, documentation, as well as preparatory material in that regard, is and shall remain the exclusive property of the LONGRUN Consortium and any of its members or its licensors. Nothing contained in this document shall give, or shall be construed as giving, any right, title, ownership, interest, license or any other right in or to any IP, know-how and information.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 874972. The information and views set out in this publication does not necessarily reflect the official opinion of the European Commission. Neither the European Union institutions and bodies nor any person acting on their behalf, may be held responsible for the use which may be made of the information contained therein.

