

D2.8 – Assessment of future alternative liquid fuels for an optimised CI combustion

Innovation Action

EUROPEAN COMMISSION

Grant Agreement No. 874972

HORIZON 2020 PROGRAMME

Topic LC-GV-04-2019

Low-emission propulsion for long-distance trucks and coaches

Deliverable No.	LONGRUN D2.8	
Related WP	2	
Deliverable Title	Assessment of future alternative liquid fuels for	
	an optimised CI combustion	
Deliverable Date	2022-01-31	
Deliverable Type	REPORT	
Dissemination level	Confidential – member only (CO)	
Written By	Johannes Rudolph, Kai Deppenkemper (FEV)	2021-12-31
Checked by	Gaetano de Paola (IFPEN)	2022-01-18
Reviewed by (if applicable)	Johan Engström (Volvo), Roberto Cipollone	2022-01-26
	(University of L'Aquila)	
Approved by	Lukas Virnich (FEV)	2022-01-31
Status	Final	2022-01-31

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 874972.

Publishable summary

Tightened emission legislations and sustainable governance are increasing the demand towards renewable fuels today. Main challenges are the compatibility with conventional combustion engines and additional potential efforts in engine software calibration and hardware changes. Also, availability, transportability and handling of the alternative fuels have to be taken into account, as they play a main role regarding affordability and acceptance on a large scale. This assessment of future alternative liquid fuels for an optimized compression ignition (CI) combustion gives an overview of different alternative fuels, their physical and chemical properties as well as their features.

In this work, an investigation of the liquid fuels represented by: (1) Hydrotreated Vegetable Oil, (2) methanol, (3) 1-octanol, (4) DME and (5) OME_{3-5} were performed. All these alternative fuels show a high CO_2 reduction potential due to their production out of biomass or renewable energy sources. They also show further advantages in terms of emission. Different Cetane numbers or higher oxygen contents reduce the formation of soot and improve the combustion quality which lowers HC and CO emissions. These properties have a high impact with regards to future emission legislations. In addition, investigations show an improvement of the indicated efficiency of the engine for all alternative fuels.

8 Acknowledgement

The author(s) would like to thank the partners in the project for their valuable comments on previous drafts and for performing the review.

Project partners:

#	Partner	Partner Full Name
1	FEV	FEV EUROPE GMBH
2	DAF	DAF TRUCKS NV
3	FPT	FPT INDUSTRIAL SPA
4	FORD	FORD OTOMOTIV SANAYI ANONIM SIRKETI
5	IRIZAR	IRIZAR S COOP
6	IVECO	IVECO S.p.A.
7	VOLVO	VOLVO TECHNOLOGY AB
8	VDL	VDL ENABLING TRANSPORT SOLUTIONS BV
9	ABEE	AVESTA BATTERY & ENERGY ENGINEERING
10	AVL	AVL LIST GMBH
11	EATON	EATON ELEKTROTECHNIKA SRO
12	GARR	GARRETT MOTION CZECH REPUBLIC SRO
13	IDIADA	IDIADA AUTOMOTIVE TECHNOLOGY SA
14	IFP	IFP Enegeies Nouvelles
15	AVL	AVL MTC MOTORTESTCENTER AB
16	NESTE	NESTE OYJ
17	PRIMA	PRIMAFRIO SL
18	SHELL	SHELL GLOBAL SOLUTIONS (DEUTSCHLAND) GMBH
19	SIE	SIEMENS INDUSTRY SOFTWARE SAS
20	TECHNA	FUNDACION TECHNALIA RESEARCH & INNOVATION
21	TOTAL	TOTAL MARKETING SERVICES
22	UMIC	UMICORE AG & CO KG
23	UNR	UNIRESEARCH BH
24	JRC	JRC -JOINT RESEARCH CENTRE – EUROPEAN COMMISSION
25	CHALM	CHALMERS TEKNISKA HOEGSKOLA AB
26	RWTH	RHEINISCH-WESTFAELISCHE TECHNISCHE HOCHSCHULE AACHEN
27	TU/e	TECHNISCHE UNIVERSITEI EINDHOVEN
28	TUG	TECHNISCHE UNIVERSITAET GRAZ
29	UNIAQ	UNIVERSITA DEGLI STUDI DELL'AQUILA
30	VUB	VRIJE UNIVERSITEIT BRUSSEL

8.1 Disclaimer

Copyright ©, all rights reserved. This document or any part thereof may not be made public or disclosed, copied or otherwise reproduced or used in any form or by any means, without prior permission in writing from the LONGRUN Consortium. Neither the LONGRUN Consortium nor any of its members, their officers, employees or agents shall be liable or responsible, in negligence or otherwise, for any loss, damage or expense whatever sustained by any person as a result of the use, in any manner or form, of any knowledge, information or data contained in this document, or due to any inaccuracy, omission or error therein contained.

All Intellectual Property Rights, know-how and information provided by and/or arising from this document, such as designs, documentation, as well as preparatory material in that regard, is and shall remain the exclusive property of the LONGRUN Consortium and any of its members or its licensors. Nothing contained in this document shall give, or shall be construed as giving, any right, title, ownership, interest, license or any other right in or to any IP, know-how and information.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 874972. The information and views set out in this publication does not necessarily reflect the official opinion of the European Commission. Neither the European Union institutions and bodies nor any person acting on their behalf, may be held responsible for the use which may be made of the information contained therein.

