

D2.7 – Characteristics and specifications of EAS for engines operated with Diesel fuel and Diesel and renewable fuels in Dual-Fuel operation

Research Innovation Action

EUROPEAN COMMISSION

Grant Agreement No. 874972

HORIZON 2020 PROGRAMME Topic LC-GV-04-2019

Low-emissions propulsion for long-distance trucks and coaches

Deliverable No.	LONGRUN D2.7	
Related WP	2	
Deliverable Title	Characteristics and specifications of EAS for engines operated with Diesel fuel and Diesel and renewable fuels in Dual-Fuel operation	
Deliverable Date	2021-12-31	
Deliverable Type	REPORT	
Dissemination level	Confidential – member only (CO)	CO
Written By	Georg Kaufmann, Klaus Hadl (all AVL)	2021-12-13
Reviewed by (if applicable)	Bram Hakstege (DAFTrucks)	2022-02-03
Reviewed by (if applicable)	Caner Harman (FO)	2021-12-20
Approved by	Lukas Virnich	2022-03-03
Status	Final	2022-02-03

Publishable summary

This report describes the development and layout of an exhaust aftertreatment system for engines operated with Diesel fuel and optionally with blends of Hydrogenated Vegetable Oil (HVO).

At start of the work the LONGRUN emission targets were discussed and considerably aggravated for NOx and N2O. The revised targets have been based on an initial proposal from CLOVE, Oct 2020. Thus, the limit for NOx was set to 80 mg/kWh and the limit for N2O to 35 mg/kWh. Both limits refer to combined WHTC (cold/ warm). In terms of NOx, this represents a reduction compared to the current EURO VI limit by approximately 83 %. While N2O is not yet regulated in the European legislation, in US there is a limit of 100 mg/bhp-hr in the combined FTP cold/hot meaning that the LONGRUN target of 35 mg/kWh is a ~75 % reduction compared to the current US legislation.

The investigation of the optimum aftertreatment system architecture started with an experiencebased assessment of 26 system configurations together with UMICORE and VOLVO who are partners of WP2, Sub-Task ST2.3.2.

Five architectures were selected for detailed investigations. Vanadium and copper-based SCR technology was used in the simulation study. While state-of-the-art Cu-SCR kinetics were taken from the AVL model database, Umicore provided syngas measurement data of the V-SCR technology. Based on this syngas data a corresponding simulation model was set up in AVL CruiseM™.

Lowest NOx and N2O emissions have been predicted with exhaust aftertreatment system configurations with two SCR-stages. The introduction of an electrical heater shows high potential to reduce emissions right after cold start. The use of Vanadium-based SCR technology is mandatory in view of N2O emission compliance.

7 Acknowledgement

The author(s) would like to thank the partners in the project for their valuable comments on previous drafts and for performing the review.

Project partners:

#	Partner	Partner Full Name
1	FEV	FEV EUROPE GMBH
2	DAF	DAF TRUCKS NV
3	FPT	FPT INDUSTRIAL SPA
4	FORD	FORD OTOMOTIV SANAYI ANONIM SIRKETI
5	IRIZAR	IRIZAR S COOP
6	IVECO	IVECO S.p.A.
7	VOLVO	VOLVO TECHNOLOGY AB
8	VDL	VDL ENABLING TRANSPORT SOLUTIONS BV
9	ABEE	AVESTA BATTERY & ENERGY ENGINEERING
10	AVL	AVL LIST GMBH
11	EATON	EATON ELEKTROTECHNIKA SRO
12	GARR	GARRETT MOTION CZECH REPUBLIC SRO
13	IDIADA	IDIADA AUTOMOTIVE TECHNOLOGY SA
14	IFP	IFP Enegeies Nouvelles
15	AVL	AVL MTC MOTORTESTCENTER AB
16	NESTE	NESTE OYJ
17	PRIMA	PRIMAFRIO SL
18	SHELL	SHELL GLOBAL SOLUTIONS (DEUTSCHLAND) GMBH
19	SIE	SIEMENS INDUSTRY SOFTWARE SAS
20	TECHNA	FUNDACION TECHNALIA RESEARCH & INNOVATION
21	TOTAL	TOTAL MARKETING SERVICES
22	UMIC	UMICORE AG & CO KG
23	UNR	UNIRESEARCH BH
24	JRC	JRC -JOINT RESEARCH CENTRE – EUROPEAN COMMISSION
25	CHALM	CHALMERS TEKNISKA HOEGSKOLA AB
26	RWTH	RHEINISCH-WESTFAELISCHE TECHNISCHE HOCHSCHULE AACHEN
27	TU/e	TECHNISCHE UNIVERSITEI EINDHOVEN
28	TUG	TECHNISCHE UNIVERSITAET GRAZ
29	UNIAQ	UNIVERSITA DEGLI STUDI DELL'AQUILA
30	VUB	VRIJE UNIVERSITEIT BRUSSEL

Disclaimer 7.1

Copyright ©, all rights reserved. This document or any part thereof may not be made public or disclosed, copied or otherwise reproduced or used in any form or by any means, without prior permission in writing from the LONGRUN Consortium. Neither the LONGRUN Consortium nor any of its members, their officers, employees or agents shall be liable or responsible, in negligence or otherwise, for any loss, damage or expense whatever sustained by any person as a result of the use, in any manner or form, of any knowledge, information or data contained in this document, or due to any inaccuracy, omission or error therein contained.

All Intellectual Property Rights, know-how and information provided by and/or arising from this document, such as designs, documentation, as well as preparatory material in that regard, is and shall remain the exclusive property of the LONGRUN Consortium and any of its members or its licensors. Nothing contained in this document shall give, or shall be construed as giving, any right, title, ownership, interest, license or any other right in or to any IP, know-how and information.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 874972. The information and views set out in this publication does not necessarily reflect the official opinion of the European Commission. Neither the European Union institutions and bodies nor any person acting on their behalf, may be held responsible for the use which may be made of the information contained therein.