

D2. 5 – Assessment of the Dual Fuel (liq/liq) combustion

Research Innovation Action

EUROPEAN COMMISSION

Grant Agreement No. 874972

HORIZON 2020 PROGRAMME Topic LC-GV-04-2019 Low-emissions propulsion for long-distance trucks and coaches

Deliverable No.	LONGRUN D2.05	
Related WP	WP2	
Deliverable Title	Assessment of the Dual Fuel (liq/liq) combustion	
Deliverable Date	2021-09-30	
Deliverable Type	REPORT	
Dissemination level	Confidential – member only (CO)	
Written By	Kai Deppenkemper, Sandra Glück (FEV), Rajesh	2021-08-17
	Kumar (IFPEN)	
Checked by	Florence Duffour (IFPEN)	2021-08-31
Reviewed by (if applicable)	Marco Günther (RWTH), Andreas Kolbeck (Shell)	2021-09-20
Approved by	Lukas Virnich (FEV)	2021-09-24
Status	Final	2021-09-30

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 874972.

Publishable summary

The project partners (OEMs, engineering partners and fuel suppliers) discussed about possible sustainable fuels and combustion systems which are promising with regards to high thermal efficiency, low engine-out emissions and suitability for current and modified fuel infrastructures. The results have been presented in deliverable D2.1.

Methanol was one of the fuels selected being the best compromise in the tradeoff between fuel production cost and transportability. In contrast to typical spark-ignited methanol combustion, a new combustion concept was selected where methanol is burned diffusively in a compression ignition (CI) engine. To enable CI of methanol, a diesel pilot is used to preheat the combustion chamber (called Dual Direct Injection Compression Ignition, DDI CI). The resulting process allows to operate on a high compression ratio thereby achieving high thermal efficiency.

In addition to engine testing, the diffusive combustion of methanol was investigated via Computational Fluid Dynamics (CFD), enabling to vary a broader range of parameters in a less cost-intensive manner. The main simulation objective is the optimization of pilot injector spray target and strategy. The pilot fuel share, pilot injection timing and the rail pressure for pilot as well as for main injection are the calibration parameters for the desired combustion system. Methanol injection timing will be adjusted to maintain the center of combustion.

The tests on FEVs Single Cylinder Engine (SCE) showed for best efficiency point that the diffusive dual fuel combustion concept is promising regarding efficiency (~50 %) and especially NO_x emissions (e.g. 6 g/kWh requires almost no EGR). Moreover, combustion is soot free and unburned fuel and CO emissions remain on a low level typical for diffusive combustion. Those thermodynamic tendencies could be found also at different engine operation points. Potential to further improve the combustion concept lies especially in the pilot injection timing and quantity. The potential was numerically evaluated by IFPEN.

The CFD simulations performed by IFPEN reproduced the experimental results and lead to the following key conclusions: The minimum pilot fuel quantity, while maintaining a minimum flow rate for injector cooling, should be injected. It reduces NO_x production and increases efficiency. SOI pilot should be as close to SOI main as possible, maintaining an optimum CA50. As EGR increases, overall NO_x production decreases. NO_x coming from pilot injection combustion is almost eliminated at higher EGR rate (>20 %) and NO_x is mainly produced during main combustion. The pilot injection can be further optimized by reducing the hydraulic flow rate to allow small quantity of diesel injection and by targeting optimization (reducing the cone angle). As the results were very promising overall, the partners suggest investigating the DDI CI concept in more detail in future projects.

9 Acknowledgement

The author(s) would like to thank the partners in the project for their valuable comments on previous drafts and for performing the review.

#	ect partners: Partner	Partner Full Name
1	FEV	FEV EUROPE GMBH
2	DAF	DAF TRUCKS NV
3	FPT	FPT INDUSTRIAL SPA
4	FORD	FORD OTOMOTIV SANAYI ANONIM SIRKETI
5	IRIZAR	IRIZAR S COOP
6	IVECO	IVECO S.p.A.
7	VOLVO	VOLVO TECHNOLOGY AB
8	VDL	VDL ENABLING TRANSPORT SOLUTIONS BV
9	ABEE	AVESTA BATTERY & ENERGY ENGINEERING
10	AVL	AVL LIST GMBH
11	EATON	EATON ELEKTROTECHNIKA SRO
12	GARR	GARRETT MOTION CZECH REPUBLIC SRO
13	IDIADA	IDIADA AUTOMOTIVE TECHNOLOGY SA
14	IFP	IFP Enegies Nouvelles
15	AVL	AVL MTC MOTORTESTCENTER AB
16	NESTE	NESTE OYJ
17	PRIMA	PRIMAFRIO SL
18	SHELL	SHELL GLOBAL SOLUTIONS (DEUTSCHLAND) GMBH
19	SIE	SIEMENS INDUSTRY SOFTWARE SAS
20	TECHNA	FUNDACION TECHNALIA RESEARCH & INNOVATION
21	TOTAL	TOTAL MARKETING SERVICES
22	UMIC	UMICORE AG & CO KG
23	UNR	UNIRESEARCH BH
24	JRC	JRC -JOINT RESEARCH CENTRE – EUROPEAN COMMISSION
25	CHALM	CHALMERS TEKNISKA HOEGSKOLA AB
26	RWTH	RHEINISCH-WESTFAELISCHE TECHNISCHE HOCHSCHULE AACHEN
27	TU/e	TECHNISCHE UNIVERSITEI EINDHOVEN
28	TUG	TECHNISCHE UNIVERSITAET GRAZ
29	UNIAQ	UNIVERSITA DEGLI STUDI DELL'AQUILA
30	VUB	VRIJE UNIVERSITEIT BRUSSEL

9.1 Disclaimer

Copyright ©, all rights reserved. This document or any part thereof may not be made public or disclosed, copied or otherwise reproduced or used in any form or by any means, without prior permission in writing from the LONGRUN Consortium. Neither the LONGRUN Consortium nor any of its members, their officers, employees or agents shall be liable or responsible, in negligence or otherwise, for any loss, damage or expense whatever sustained by any person as a result of the use, in any manner or form, of any knowledge, information or data contained in this document, or due to any inaccuracy, omission or error therein contained.

All Intellectual Property Rights, know-how and information provided by and/or arising from this document, such as designs, documentation, as well as preparatory material in that regard, is and shall remain the exclusive property of the LONGRUN Consortium and any of its members or its licensors. Nothing contained in this document shall give, or shall be construed as giving, any right, title, ownership, interest, license or any other right in or to any IP, know-how and information.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 874972. The information and views set out in this publication does not necessarily reflect the official opinion of the European Commission. Neither the European Union institutions and bodies nor any person acting on their behalf, may be held responsible for the use which may be made of the information contained therein.

