

D3.5 -

High efficient hybrid engine concept performance test

Innovation Action

EUROPEAN COMMISSION

Grant Agreement No. 874972

HORIZON 2020 PROGRAMME

Topic LC-GV-04-2019

Low-emissions propulsion for long-distance trucks and coaches

Deliverable No.	LONGRUN D3.5	
Related WP	WP3	
Deliverable Title	High efficient hybrid engine concept performance	
	test	
Deliverable Date	2022-09-05	
Deliverable Type	REPORT	
Dissemination level	Confidential – member only (CO)	
Written By	Johan Engström (VOLVO)	2022-09-05
Checked by	Johan Engström (VOLVO)	2022-09-05
Reviewed by	Bram Hakstege (DAF)	2022-09-07
Reviewed by	Gökay Unutulmaz (FO)	2022-09-07
Approved by	Lukas Virnich (FEV)	2022-09-09
Status	Final	2022-09-09

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 874972.

Publishable summary

WP3 has the aim to develop and demonstrate >10% energy saving in a long-haul hybrid powertrain concept, application 35/40ton vehicle. This work reports on the development of the engine concept, combustion engine and exhaust aftertreatment.

The objective for this task is to reach 50% brake engine efficiency and reduce 30% of regulations emissions, NOx, CO and hydrocarbons refer to EURO VI.

A new combustion system with high brake thermal efficiency has been developed, with increased compression ratio and a tailored piston shape. The new engine applies higher peak cylinder pressure, which enable to utilize higher boost pressure.

The emissions were fulfilled by precise control of EGR (exhaust gas recirculation) handling, provided by an EGR-pump, together with the new exhaust aftertreatment system (EATS) design based on split SCR (selected catalyst reduction) with dual urea dozing.

Engine system calibration has been conducted. Initial results show the potential for the EATS system to complete the emissions target. The engine test demonstrated an increasing engine efficiency, current around 48% brake efficiency. To reach the 50% target, more application work is required, including engine hardware update, for example integration of an electric turbo compound.

Preliminary VECTO hybrid calculations, based on the presented engine results, show a good potential to complete the 10% energy savings.

8 Acknowledgement

The author(s) would like to thank the partners in the project for their valuable comments on previous drafts and for performing the review.

Project partners:

#	Partner	Partner Full Name
1	FEV	FEV EUROPE GMBH
2	DAF	DAF TRUCKS NV
3	FPT	FPT INDUSTRIAL SPA
4	FORD	FORD OTOMOTIV SANAYI ANONIM SIRKETI
5	IRIZAR	IRIZAR S COOP
6	IVECO	IVECO S.p.A.
7	VOLVO	VOLVO TECHNOLOGY AB
8	VDL	VDL ENABLING TRANSPORT SOLUTIONS BV
9	ABEE	AVESTA BATTERY & ENERGY ENGINEERING
10	AVL	AVL LIST GMBH
11	EATON	EATON ELEKTROTECHNIKA SRO
12	GARR	GARRETT MOTION CZECH REPUBLIC SRO
13	IDIADA	IDIADA AUTOMOTIVE TECHNOLOGY SA
14	IFP	IFP Energies Nouvelles
15	AVL	AVL MTC MOTORTESTCENTER AB
16	NESTE	NESTE OYJ
17	PRIMA	PRIMAFRIO SL
18	SHELL	SHELL GLOBAL SOLUTIONS (DEUTSCHLAND) GMBH
19	SIE	SIEMENS INDUSTRY SOFTWARE SAS
20	TECHNA	FUNDACION TECHNALIA RESEARCH & INNOVATION
21	TOTAL	TOTAL MARKETING SERVICES
22	UMIC	UMICORE AG & CO KG
23	UNR	UNIRESEARCH BH
24	JRC	JRC -JOINT RESEARCH CENTRE – EUROPEAN COMMISSION
25	CHALM	CHALMERS TEKNISKA HOEGSKOLA AB
26	RWTH	RHEINISCH-WESTFAELISCHE TECHNISCHE HOCHSCHULE AACHEN
27	TU/e	TECHNISCHE UNIVERSITEI EINDHOVEN
28	TUG	TECHNISCHE UNIVERSITAET GRAZ
29	UNIAQ	UNIVERSITA DEGLI STUDI DELL'AQUILA
30	VUB	VRIJE UNIVERSITEIT BRUSSEL

8.1 Disclaimer

Copyright ©, all rights reserved. This document or any part thereof may not be made public or disclosed, copied or otherwise reproduced or used in any form or by any means, without prior permission in writing from the LONGRUN Consortium. Neither the LONGRUN Consortium nor any of its members, their officers, employees or agents shall be liable or responsible, in negligence or otherwise, for any loss, damage or expense whatever sustained by any person as a result of the use, in any manner or form, of any knowledge, information or data contained in this document, or due to any inaccuracy, omission or error therein contained.

All Intellectual Property Rights, know-how and information provided by and/or arising from this document, such as designs, documentation, as well as preparatory material in that regard, is and shall remain the exclusive property of the LONGRUN Consortium and any of its members or its licensors. Nothing contained in this document shall give, or shall be construed as giving, any right, title, ownership, interest, license or any other right in or to any IP, know-how and information.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 874972. The information and views set out in this publication does not necessarily reflect the official opinion of the European Commission. Neither the European Union institutions and bodies nor any person acting on their behalf, may be held responsible for the use which may be made of the information contained therein.

