

D3.1 – Thermodynamic layout and combustion concept

Research Innovation Action

EUROPEAN COMMISSION

Grant Agreement No. 874972

HORIZON 2020 PROGRAMME

Topic LC-GV-04-2019

Low-emissions propulsion for long-distance trucks and coaches

Deliverable No.	LONGRUN D3.1	
Related WP	3	
Deliverable Title	Thermodynamic layout and combustion	
	concept	
Deliverable Date	2021-06-30	
Deliverable Type	REPORT	
Dissemination level	Confidential – member only (CO)	
Written By	Daniele Corsini, Thomas Sacher, Helmut	2021-05-21
	Theissl, Herwig Ofner (all AVL)	
Checked by	Johan Engström (VOLVO)	2021-05-25
Reviewed by (if applicable)	Dr. Ziya Caba (FO)	2021-06-09
Approved by	Lukas Virnich	2021-06-30
Status	Final	2021-06-30

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 874972.

Publishable summary

This report describes the layout and simulations of the thermodynamic engine cycle with a new combustion concept for the Diesel/HVO engine developed in WP3 of LONGRUN. The work builds on an initial concept definition which has been developed in a workshop together with partners in WP3.

Starting with the base engine, a new combustion concept in combination with a high-performance turbocharger and a high pressure EGR system was applied. Initially, the BSFC was optimized at an engine-out NOx level of 10 g/kWh. This first development step reduced the BSFC by 6,3% but increased the peak firing pressure from 180bar to 260bar.

Next, different EGR concepts were investigated and optimized to assess the BSFC versus NOx trade-off towards lower engine-out NOx emissions. It could be shown that some of the concepts with a slightly increased BSFC (approximately 0,5 g/kWh) reached the level of 5 g/kWh NOx emission. The best NOx BSFC trade-off was achieved with a combination of high pressure EGR and turbo-compound or a combination of high pressure and low pressure EGR.

Finally, a roadmap towards 50% brake thermal efficiency is given. The chosen measures are an increased mechanical efficiency, a reduction of pressure losses and an increased turbocharger efficiency in combination with a Miller cycle.

With reference to the Grant Agreement Annex 1 Part A, the targets of this investigation were reached.

Acknowledgement

The author(s) would like to thank the partners in the project for their valuable comments on previous drafts and for performing the review.

Project partners:

#	Partner	Partner Full Name
1	FEV	FEV EUROPE GMBH
2	DAF	DAF TRUCKS NV
3	FPT	FPT INDUSTRIAL SPA
4	FORD	FORD OTOMOTIV SANAYI ANONIM SIRKETI
5	IRIZAR	IRIZAR S COOP
6	IVECO	IVECO S.p.A.
7	VOLVO	VOLVO TECHNOLOGY AB
8	VDL	VDL ENABLING TRANSPORT SOLUTIONS BV
9	ABEE	AVESTA BATTERY & ENERGY ENGINEERING
10	AVL	AVL LIST GMBH
11	EATON	EATON ELEKTROTECHNIKA SRO
12	GARR	GARRETT MOTION CZECH REPUBLIC SRO
13	IDIADA	IDIADA AUTOMOTIVE TECHNOLOGY SA
14	IFP	IFP Enegeies Nouvelles
15	AVL	AVL MTC MOTORTESTCENTER AB
16	NESTE	NESTE OYJ
17	PRIMA	PRIMAFRIO SL
18	SHELL	SHELL GLOBAL SOLUTIONS (DEUTSCHLAND) GMBH
19	SIE	SIEMENS INDUSTRY SOFTWARE SAS
20	TECHNA	FUNDACION TECHNALIA RESEARCH & INNOVATION
21	TOTAL	TOTAL MARKETING SERVICES
22	UMIC	UMICORE AG & CO KG
23	UNR	UNIRESEARCH BH
24	JRC	JRC -JOINT RESEARCH CENTRE – EUROPEAN COMMISSION
25	CHALM	CHALMERS TEKNISKA HOEGSKOLA AB
26	RWTH	RHEINISCH-WESTFAELISCHE TECHNISCHE HOCHSCHULE AACHEN
27	TU/e	TECHNISCHE UNIVERSITEI EINDHOVEN
28	TUG	TECHNISCHE UNIVERSITAET GRAZ
29	UNIAQ	UNIVERSITA DEGLI STUDI DELL'AQUILA
30	VUB	VRIJE UNIVERSITEIT BRUSSEL

1.1 Disclaimer

Copyright ©, all rights reserved. This document or any part thereof may not be made public or disclosed, copied or otherwise reproduced or used in any form or by any means, without prior permission in writing from the LONGRUN Consortium. Neither the LONGRUN Consortium nor any of its members, their officers, employees or agents shall be liable or responsible, in negligence or otherwise, for any loss, damage or expense whatever sustained by any person as a result of the use, in any manner or form, of any knowledge, information or data contained in this document, or due to any inaccuracy, omission or error therein contained.

All Intellectual Property Rights, know-how and information provided by and/or arising from this document, such as designs, documentation, as well as preparatory material in that regard, is and shall remain the exclusive property of the LONGRUN Consortium and any of its members or its licensors. Nothing contained in this document shall give, or shall be construed as giving, any right, title, ownership, interest, license or any other right in or to any IP, know-how and information.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 874972. The information and views set out in this publication does not necessarily reflect the official opinion of the European Commission. Neither the European Union institutions and bodies nor any person acting on their behalf, may be held responsible for the use which may be made of the information contained therein.

