

D2.12 – EAS Model Development

Research Innovation Action

EUROPEAN COMMISSION

Grant Agreement No. 874972

HORIZON 2020 PROGRAMME Topic LC-GV-04-2019 Low-emissions propulsion for long-distance trucks and coaches

Deliverable No.	LONGRUN D2.12	
Related WP	2.3.3	
Deliverable Title	EAS Model Development	
Deliverable Date	2022-12-10	
Deliverable Type	REPORT	
Dissemination level	Confidential (CO)	
Written By	Dawei Yao and Louise Olsson, CHALMERS	2022-12-10
Checked by	Gaetano de Paolo (IFPEN)	
Reviewed by (if applicable)	Stijn Broekaert (JRC) &	2022-12-14
	Nelson Mateus Pippi Lorenzoni	2022-12-16
Approved by	Lukas Virnich (FEV	2022-12-22
Status	Final	2022-12-22

Publishable summary

With the increase in automotive market, the concerns for nitrogen oxides (NO_x) generation substantially grows in many countries. The application of technologies such as lean NO_x traps (LNT) and NH_3 selective catalytic reduction (SCR) can significantly reduce vehicle NO_x emissions. However, owing to the kinetic limitations of the LNT and that urea cannot be dosed at low temperature for the SCR system (around 200 °C is typically needed), these systems cannot effectively reduce NO_x emissions in cold start periods of the engine. Accordingly, passive NO_x adsorption (PNA) has been recently developed as a promising technology for controlling the NO_x emissions during the cold start period. Three material groups have been studied in detail for PNA application: Pd/Al₂O₃, Pd/CeO₂ and Pd/Zeolites, where all of these materials showed significant NO_x storage capacity at low temperature. However, both Pd/Al₂O₃ and Pd/CeO₂ suffers from serious degradation with the existence of sulphur, which significantly weaken the interaction between PdO and support. Therefore, there is a growing interest in Pd zeolites for PNA due to their tolerance to sulphur and H₂O. Pd/ZSM-5, Pd/BEA and Pd/SSZ-13 have been widely investigated as high-performance PNA materials. Particularly, SSZ-13 zeolite, which has small pore in the internal channel, has been shown to be most effective material among all the zeolites, with a relatively high NO_x desorption temperature. However, the PNA module is usually designed to be placed in front of the other aftertreatment modules to adsorb NO_x species. Owing to the incomplete combustion of diesel during cold start, CO pulses with extremely high concentrations are generated, which can account for 80% of CO release in the total duration. Under such high concentration CO, serious degradation usually happens on PNAs during the multiple times cold start of engine.

To investigate the reaction mechanism of PNA, a few kinetic models have been developed, while there are no available kinetic models for the effect of NO_x and CO concentrations on Pd/SSZ-13. We first illustrate a CO-assisted mechanism in this program by combining experimental and kinetic modelling studies. Pd/SSZ-13 has been synthesized, characterized, and evaluated as a PNA in low-temperature NO_x adsorption and temperature program desorption cycles, to represent multiple cold start periods. The gas compositions were also systemically changed, where both the effect of varying NO_x and CO feed was evaluated in the presence of high water and oxygen contents. A kinetic model was developed to simulate the profiles of NO and NO₂, including three initial Pd sites (Z⁻Pd(II)Z⁻, Z⁻[Pd(II)OH]⁺ and PdO). It is concluded from X-ray photoelectron spectroscopy and in-situ Diffuse Reflection Infrared Fourier Transformations Spectroscopy, flow reactor measurements and modelling observations that CO reduces Pd(II) species to Pd(I)/Pd(0) species, which increases the stability of the stored NOx species, resulting in a release above the urea dosing temperature. The model could well describe the experimental features, including the effect of CO. In addition, the model was used for full-scale catalytic converter simulations.

Although the kinetic models for the effect of NO_x and CO concentrations are established, the influence of CO is still questionable. Experimentally we find an irregular effect by changing CO concentration: Under low CO concentration (0~400 ppm), CO contributes to the larger amount of absorbed NO_x and a higher temperature for desorption, while a substantial degradation of the Pd zeolite occurs during multi-cycle NO_x adsorption under high CO concentration (~4000 ppm). Owing to the very different

influences of CO under varied concentrations on Pd zeolite, no kinetic model has been established so far that could be applied for describing the CO-assisted NO_x storage and CO-induced Pd zeolite deactivation. Herein, we illustrate the CO-induced degradation mechanism of Pd zeolite by combining experiments and kinetic models. Pd/SSZ-13 has been used in multicycle processes containing NO_x adsorption at low temperature and temperature programmed desorption, which represents the PNA degradation in multiple cold start periods. A kinetic model was developed to describe the NO_x storage and degradation behaviour of Pd/SSZ-13. Both experimental and modelling observations suggested that two Pd sintering modes are occurring under high CO concentration, namely Ostwald ripening and particle migration. Apart from the degradation behaviour, this model is also adequate for describing multi-cycle NO_x storage and release behaviour under low CO concentration.

Based on the CO-induced degradation mechanism, we further developed a novel form of Pd/SSZ-13. This Pd/SSZ-13 showed a better stability than the sample synthesized by the common process. Several characterizations were conducted to determine why the newly synthesized Pd/SSZ-13 exhibited a higher stability. This material offers a potentially improved stability of PNAs under extremely high CO concentration pulses from incomplete diesel combustion during engine cold start.

7 Acknowledgement

This work was achieved at the Division of Chemical Engineering and the Competence Center for Catalysis, Chalmers University of Technology in Gothenburg, Sweden, in collaboration with AVL List GmbH in Graz, Austria. We thank Dr. Johann Wurzenberger and Dr. Thomas Glatz from AVL List GmbH for simulations and important discussions, Dr. Thomas Mitterfellner and Anton Nahtigal from AVL List GmbH for the help with AVL BOOST, Dr. Eric Tam, Dr. Stefan Gustafsson and Dr. Ludvig de Knoop from Chalmers material characterization laboratory, Chalmers University of Technology for their help with XPS and ESEM. This project is funded from the European Union's Horizon 2020 research and innovation programme under grant agreement no 874972.

#	Partner	Partner Full Name
1	FEV	FEV EUROPE GMBH
2	DAF	DAF TRUCKS NV
3	FPT	FPT INDUSTRIAL SPA
4	FORD	FORD OTOMOTIV SANAYI ANONIM SIRKETI
5	IRIZAR	IRIZAR S COOP
6	IVECO	IVECO S.p.A.
7	VOLVO	VOLVO TECHNOLOGY AB
8	VDL	VDL ENABLING TRANSPORT SOLUTIONS BV
9	ABEE	AVESTA BATTERY & ENERGY ENGINEERING
10	AVL	AVL LIST GMBH
11	EATON	EATON ELEKTROTECHNIKA SRO
12	GARR	GARRETT MOTION CZECH REPUBLIC SRO
13	IDIADA	IDIADA AUTOMOTIVE TECHNOLOGY SA
14	IFP	IFP Enegeies Nouvelles
15	AVL	AVL MTC MOTORTESTCENTER AB
16	NESTE	NESTE OYJ
17	PRIMA	PRIMAFRIO SL
18	SHELL	SHELL GLOBAL SOLUTIONS (DEUTSCHLAND) GMBH
19	SIE	SIEMENS INDUSTRY SOFTWARE SAS
20	TECHNA	FUNDACION TECHNALIA RESEARCH & INNOVATION
21	TOTAL	TOTAL MARKETING SERVICES
22	UMIC	UMICORE AG & CO KG
23	UNR	UNIRESEARCH BH
24	JRC	JRC -JOINT RESEARCH CENTRE – EUROPEAN COMMISSION
25	CHALM	CHALMERS TEKNISKA HOEGSKOLA AB
26	RWTH	RHEINISCH-WESTFAELISCHE TECHNISCHE HOCHSCHULE AACHEN
27	TU/e	TECHNISCHE UNIVERSITEI EINDHOVEN
28	TUG	TECHNISCHE UNIVERSITAET GRAZ
29	UNIAQ	UNIVERSITA DEGLI STUDI DELL'AQUILA
30	VUB	VRIJE UNIVERSITEIT BRUSSEL

Project partners:

7.1 Disclaimer

Copyright ©, all rights reserved. This document or any part thereof may not be made public or disclosed, copied or otherwise reproduced or used in any form or by any means, without prior permission in writing from the LONGRUN Consortium. Neither the LONGRUN Consortium nor any of its members, their officers, employees or agents shall be liable or responsible, in negligence or otherwise, for any loss, damage or

expense whatever sustained by any person as a result of the use, in any manner or form, of any knowledge, information or data contained in this document, or due to any inaccuracy, omission or error therein contained.

All Intellectual Property Rights, know-how and information provided by and/or arising from this document, such as designs, documentation, as well as preparatory material in that regard, is and shall remain the exclusive property of the LONGRUN Consortium and any of its members or its licensors. Nothing contained in this document shall give, or shall be construed as giving, any right, title, ownership, interest, license or any other right in or to any IP, know-how and information.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 875189. The information and views set out in this publication does not necessarily reflect the official opinion of the European Commission. Neither the European Union institutions and bodies nor any person acting on their behalf, may be held responsible for the use which may be made of the information contained therein.