

D2.10 – Assessment of direct injection hydrogen spark ignited combustion

Innovation Action

EUROPEAN COMMISSION

Grant Agreement No. 874972

HORIZON 2020 PROGRAMME

Topic LC-GV-04-2019

Low-emission propulsion for long-distance trucks and coaches

Deliverable No.	LONGRUN D2.10	
Related WP	WP2	
Deliverable Title	Assessment of direct injection hydrogen spark	
	ignited combustion	
Deliverable Date	2022-07-31	
Deliverable Type	REPORT	
Dissemination level	Confidential – member only (CO)	
Written By	Kai Deppenkemper, Thomas Durand (FEV),	2021-08-31
	Giampaolo Maio (IFPEN)	
Checked by	Gaetano de Paola (IFPEN)	2022-09-02
Reviewed by (if applicable)	Herwig Hofer (AVL), Laurentius Jaeger (Garrett)	2022-09-30
Approved by	Lukas Virnich (FEV)	2022-12-12
Status	Final	2022-12-12

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 874972.

Publishable summary

The idea of using hydrogen as a spark ignition engine fuel was already proposed decades ago [1]. However, in the past, technical and economical limitations for its production, transportation and utilization have strongly restricted its use. Nowadays, the urgent need to decarbonize the energy sector together with the progress in hydrogen production have led to renewed interest in H_2 powertrain technologies [2].

The fuel-based CO_2 , CO and HC emissions from H_2 combustion are zero. However, nitrogen oxide (NO_X) emissions are still an issue that need to be tackled as their formation strongly depends on the in-cylinder mixture and temperature distribution. To achieve the optimal design of internal combustion engines, work on combined experimental and numerical research studies is an effective and powerful strategy.

In the present work package, an integrated numerical and experimental study on a heavy-duty H₂ engine is presented. For this purpose, a single-cylinder engine of the heavy-duty 13 l six-cylinder engine class has been modified to enable operation with H₂. The engine configuration made it possible to employ both a PFI and DI injection strategy for a direct comparison. As mixture homogeneity plays an important role for both engine performance and emissions, the PFI configuration will be used as a near-homogeneous reference for the numerical study. Additionally, this comparison will highlight the potential of DI hydrogen engines regarding the optimization of the mixture homogenization.

Lean-burn operating strategies show benefits in efficiency and emissions when using 100 % H_2 . Additionally, stoichiometric operation is limited by knocking and is therefore more suited for passenger car applications, considering the lower boost pressure demand is more advantageous for dynamic operation [12,13].

Concerning numerical simulation, the Extended Coherent Flame Model (ECFM) in both its Reynoldsaveraged Navier-Stokes (RANS) [14] and its large eddy simulation (LES) [15] formulation has demonstrated to be a well suited turbulent combustion model to compute spark ignition engines accounting for several complex phenomena: ignition [16], flame propagation [14], auto-ignition [17] and pollutant formation [33]. NO_x formation is modelled based on detailed kinetics using a postflame model. As a first step, the CFD model is validated in PFI conditions to avoid any possible errors coming from mixing mispredictions on an experimental spark advance sweep and on an equivalence ratio variation. Focus is put on knocking tendencies and NO_x formation. Then, aware of its potentiality and limitations, the CFD model is used to compute DI operating conditions to improve the understanding of in-cylinder phenomena. Using 3D-CFD simulation an alternative injection cap design is also proposed to avoid rich mixture spots that are at the origin of abnormal combustion events.

8 Acknowledgement

The author(s) would like to thank the partners in the project for their valuable comments on previous drafts and for performing the review.

Project partners:

#	Partner	Partner Full Name
1	FEV	FEV EUROPE GMBH
2	DAF	DAF TRUCKS NV
3	FPT	FPT INDUSTRIAL SPA
4	FORD	FORD OTOMOTIV SANAYI ANONIM SIRKETI
5	IRIZAR	IRIZAR S COOP
6	IVECO	IVECO S.p.A.
7	VOLVO	VOLVO TECHNOLOGY AB
8	VDL	VDL ENABLING TRANSPORT SOLUTIONS BV
9	ABEE	AVESTA BATTERY & ENERGY ENGINEERING
10	AVL	AVL LIST GMBH
11	EATON	EATON ELEKTROTECHNIKA SRO
12	GARR	GARRETT MOTION CZECH REPUBLIC SRO
13	IDIADA	IDIADA AUTOMOTIVE TECHNOLOGY SA
14	IFP	IFP Enegeies Nouvelles
15	AVL	AVL MTC MOTORTESTCENTER AB
16	NESTE	NESTE OYJ
17	PRIMA	PRIMAFRIO SL
18	SHELL	SHELL GLOBAL SOLUTIONS (DEUTSCHLAND) GMBH
19	SIE	SIEMENS INDUSTRY SOFTWARE SAS
20	TECHNA	FUNDACION TECHNALIA RESEARCH & INNOVATION
21	TOTAL	TOTAL MARKETING SERVICES
22	UMIC	UMICORE AG & CO KG
23	UNR	UNIRESEARCH BH
24	JRC	JRC -JOINT RESEARCH CENTRE – EUROPEAN COMMISSION
25	CHALM	CHALMERS TEKNISKA HOEGSKOLA AB
26	RWTH	RHEINISCH-WESTFAELISCHE TECHNISCHE HOCHSCHULE AACHEN
27	TU/e	TECHNISCHE UNIVERSITEI EINDHOVEN
28	TUG	TECHNISCHE UNIVERSITAET GRAZ
29	UNIAQ	UNIVERSITA DEGLI STUDI DELL'AQUILA
30	VUB	VRIJE UNIVERSITEIT BRUSSEL

8.1 Disclaimer

Copyright ©, all rights reserved. This document or any part thereof may not be made public or disclosed, copied or otherwise reproduced or used in any form or by any means, without prior permission in writing from the LONGRUN Consortium. Neither the LONGRUN Consortium nor any of its members, their officers, employees or agents shall be liable or responsible, in negligence or otherwise, for any loss, damage or expense whatever sustained by any person as a result of the use, in any manner or form, of any knowledge, information or data contained in this document, or due to any inaccuracy, omission or error therein contained.

All Intellectual Property Rights, know-how and information provided by and/or arising from this document, such as designs, documentation, as well as preparatory material in that regard, is and shall remain the exclusive property of the LONGRUN Consortium and any of its members or its licensors. Nothing contained in this document shall give, or shall be construed as giving, any right, title, ownership, interest, license or any other right in or to any IP, know-how and information.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 874972. The information and views set out in this publication does not necessarily reflect the official opinion of the European Commission. Neither the European Union institutions and bodies nor any person acting on their behalf, may be held responsible for the use which may be made of the information contained therein.

